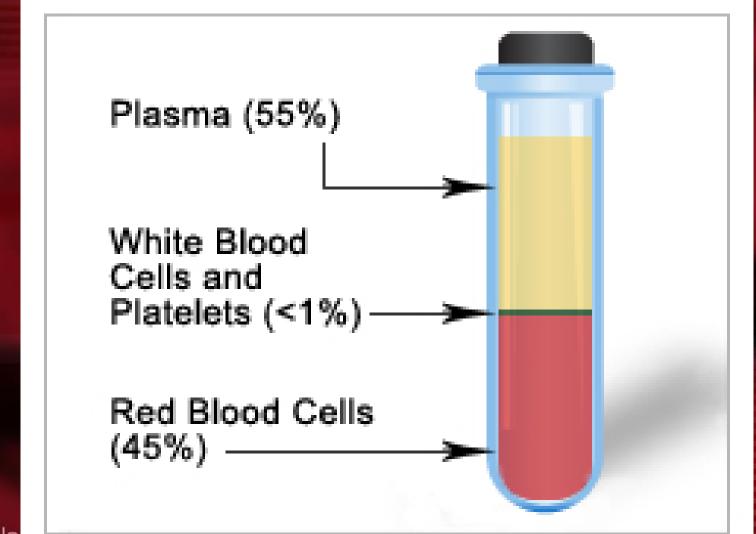
Blood Typing and Blood Genetics

 Whole blood contains red blood cells, white blood cells, and platelets (~45% of volume) suspended in plasma (~55% of volume)

Plasma

 A fluid composed of <u>92% water</u>, <u>7% vital</u> proteins such as albumin, gamma globulin, antihemophilic factor, and other clotting factors, and <u>1% mineral salts</u>, sugars, fats, hormones, and <u>vitamins</u>


- Red Blood Cells (RBC)
- Also known as erythrocytes
- Carry oxygen from the lungs to your body's tissue and take carbon dioxide back to your lungs to be exhaled
- Hemoglobin– protein found in red blood cell
 Do not have nuclei

- White blood cells (WBC)
- Also known as leukocytes
- Cells of the immune system that are involved in protecting the body against infectious disease and foreign invaders
- Have nuclei which distinguishes WBC from other blood cells

Platelets

Also known as thrombocytes
Small, colorless cell fragments in the blood whose main function is to interact with clotting proteins to stop or prevent bleeding

Separated blood

haematolo

Blood Genetics

- The human ABO gene is on chromosome 9.
- Everyone has two copies of chromosome 9 so you have two ABO genes.
- One copy is inherited from your mother, the other from your father.

Alleles

 There are three versions (called "alleles") of this blood type gene: A, B, and O.

 A person's blood type is determined by which allele he/she inherits from each parent.

Pheno vs. Geno

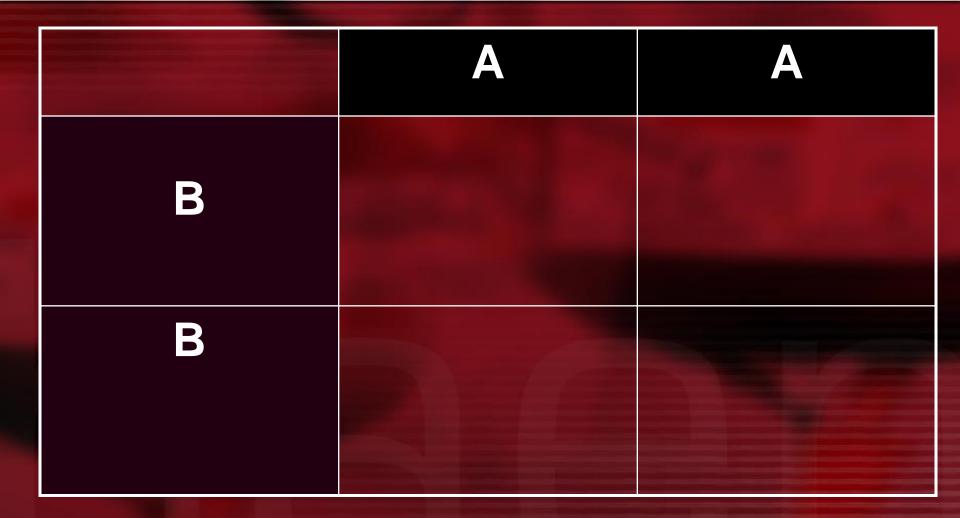
- The genetic makeup of an organism is called the "genotype".
- The "phenotype" is the visible properties of an organism.
- In this case, the A, B, and O allele combination a person has is their genotype
- Their blood type is their phenotype.

Dominant vs. Recessive Genes

- The "A" allele is dominant and so is the "B" allele.
- Together though, the "A" and "B" alleles are co-dominant.
- The "O" allele is recessive.

Determining the Genotype

The blood type gene has three different alleles:
AA is Type A
AB is Type AB
BB results in Type B
oo is Type O

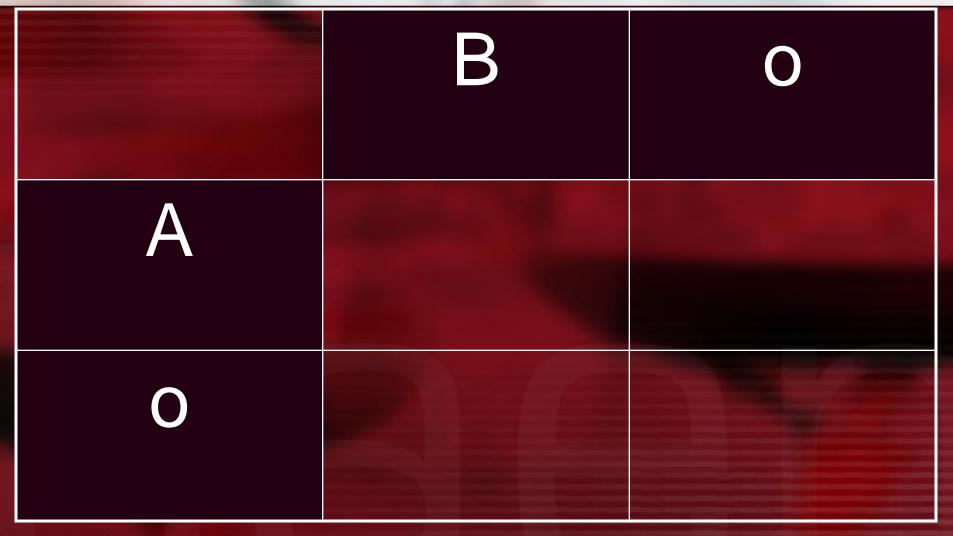

Determining the Genotype

• Scenario:

 Mom has the alleles I^AI^A for blood type and Dad has the alleles I^BI^B blood type.

• What will be the blood type for their child?

Punnett Sqaures

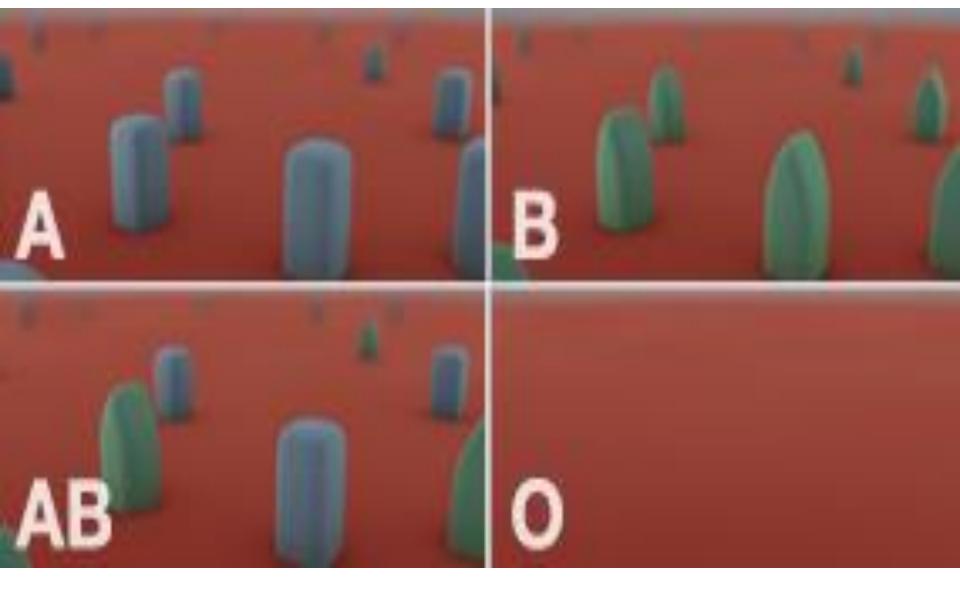


Practice

Suppose that a mother has blood Type A and genotype I^A*i* and the father has blood Type B and genotype I^B*i*. Draw a Punnett square to show the possible genotypes of their children.

What are the phenotypes of the kids?

Practice


Blood Types

- The alleles we discussed "code" for blood type.
- What they REALLY "code" for is a specific enzyme.
- That enzyme creates specific antigens on your RBC (red blood cells)

Antigens

- An antigen is a protein (encoded from the right enzyme) that "sits" on the surface of your RBC.
- There are 2 different blood antigens, A and B.
- If you have the A antigen, you have type A blood.
- If you have the B antigen, you have type B blood.

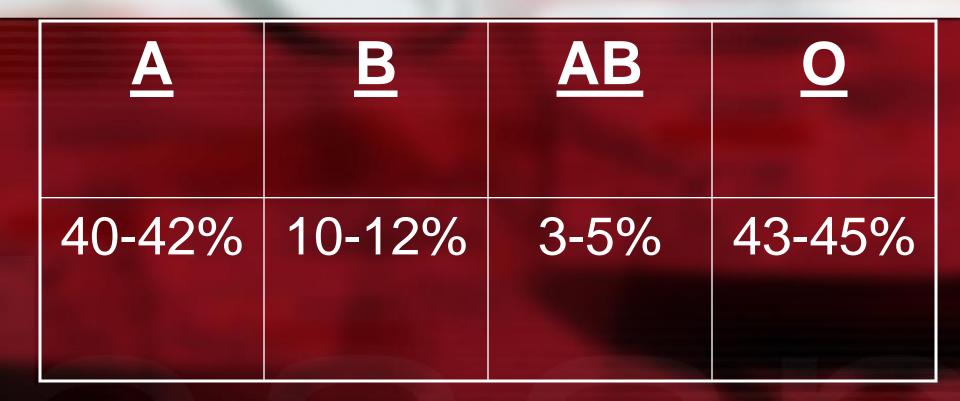
Antigens of the Surface of the RBC

Antibodies

- Blood plasma is packed with proteins called antibodies.
- The body produces a wide variety of antibodies that will recognize and attack foreign molecules.

 A person's plasma does not contain any antibodies that will bind to molecules that are part of his or her own body.

blood type	red blood cell surface molecules	plasma antibodies
type A	A only	Bonly
type B	B only	A only
type AB		neither
type O	neither	both


Blood Transfusions

- It is important to carefully match the donor and recipient blood types.
- If the donor's blood cells have antigen that are different from those of the recipient, antibodies in the recipient's blood recognize the donor blood as foreign.
- This triggers an immune response resulting in blood clotting.

Blood Transfusions

Antigen	Antibody	Can donate to	Can receive from
A			
B			
AB			
Ο			

Relative Abundance of Blood Types

Rhesus Factor (Rh)

- If a person has a positive Rh factor, this means that their blood contains another type of protein
- Most people (about 85%) have a positive Rh factor
- Rh is expressed as either positive or negative.
- The Rh factor, like other antigens, is found on the surface of the red blood cells.

Stats

O +	1 in 3 persons
O -	1 in 15 persons
A +	1 in 3 persons
A -	1 in 16 persons
B+	1 in 12 persons
B-	1 in 67 persons
AB+	1 in 29 persons
AB-	1 in 167 persons

Can Blood Be Individualized?

- Individualizing a blood sample is based on the typing of proteins and enzymes. <u>Blood proteins</u> <u>have subtypes</u>.
- You can also extract DNA from your white blood cells.
- So, yes.